Superlinear Convergence of Infeasible Predictor-Corrector Path-Following Interior Point Algorithm for SDLCP using the HKM Direction
نویسنده
چکیده
Interior point method (IPM) defines a search direction at each interior point of a region. These search directions form a direction field which in turn gives rise to a system of ordinary differential equations (ODEs). The solutions of the system of ODEs can be viewed as underlying paths in the interior of the region. In [31], these off-central paths are shown to be well-defined analytic curves and any of their accumulation points is a solution to a given monotone semidefinite linear complementarity problem (SDLCP). The study of these paths provides a way to understand how iterates generated by an interior point algorithm behave. In this paper, we give a weak sufficient condition using these off-central paths that guarantees superlinear convergence of a predictor-corrector path-following interior point algorithm for SDLCP using the HKM direction. This sufficient condition is implied by a currently known sufficient condition for superlinear convergence. Using this sufficient condition, we show that for any linear semi-definite feasibility problem, superlinear convergence using the interior point algorithm, with the HKM direction, can be achieved, for a suitable starting point. We work under the assumption of strict complementarity.
منابع مشابه
Superlinear Convergence of an Infeasible Predictor-Corrector Path-Following Interior Point Algorithm for a Semidefinite Linear Complementarity Problem Using the Helmberg--Kojima--Monteiro Direction
An interior point method (IPM) defines a search direction at each interior point of a region. These search directions form a direction field which in turn gives rise to a system of ordinary differential equations (ODEs). The solutions of the system of ODEs can be viewed as underlying paths in the interior of the region. In [C.-K. Sim and G. Zhao, Math. Program. Ser. A, 110 (2007), pp. 475–499],...
متن کاملA Constraint-reduced Algorithm for Semidefinite Optimization Problems using HKM and AHO directions
We develop a new constraint-reduced infeasible predictor-corrector interior point method for semidefinite programming, and we prove that it has polynomial global convergence and superlinear local convergence. While the new algorithm uses HKM direction in predictor step, it adopts AHO direction in corrector step to achieve a faster approach to the central path. In contrast to the previous constr...
متن کاملLocal convergence of predictor-corrector infeasible-interior-point algorithms for SDPs and SDLCPs
An example of SDPs (semide nite programs) exhibits a substantial di culty in proving the superlinear convergence of a direct extension of the Mizuno-Todd-Ye type predictorcorrector primal-dual interior-point method for LPs (linear programs) to SDPs, and suggests that we need to force the generated sequence to converge to a solution tangentially to the central path (or trajectory). A Mizuno-Todd...
متن کاملOn a General Class of Interior-point Algorithms for Semideenite Programming with Polynomial Complexity and Superlinear Convergence
We propose a uniied analysis for a class of infeasible-start predictor-corrector algorithms for semideenite programming problems, using the Monteiro-Zhang uniied direction. The algorithms are direct generalizations of the Mizuno-Todd-Ye predictor-corrector algorithm for linear programming. We show that the algorithms belonging to this class are globally convergent, provided the problem has a so...
متن کاملA Constraint-Reduced Algorithm for Semidefinite Optimization Problems with Superlinear Convergence
Constraint reduction is an essential method because the computational cost of the interior point methods can be effectively saved. Park and O’Leary proposed a constraint-reduced predictor-corrector algorithm for semidefinite programming with polynomial global convergence, but they did not show its superlinear convergence. We first develop a constraintreduced algorithm for semidefinite programmi...
متن کامل